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The averaging principle, developed earlier [l and 23 for Markov processes, 
is applied for the analysis of a stationary process behavior of a one-dlmen- 
slonal conservative system, under the action of slight random noise of the 
llwhlt.e' type and slight nonlinear friction. 

In a number of publications the averaging principle was applied to Markov 
processes. For example, In [3], a linear conservative system, under the 
action of slight white noise, was investigated. In [43 a similar system, 
with friction, was studied under the assumption that the effect of noise is 
much smaller than the effect of friction. An arbitrary one-dimensional con- 
servative system was considered In the Interesting monograph [5], under the 
assumption, however, that the noise Intensity Is independent of the point of 
phase space. In addition, In all these works, the rigorous proof of the 
appllcatlon of the averaging principle to random processes was not given. 

In 161, a linear conservative system subjected to the action of a non- 
linear friction and white noise, under varlcus relations between friction and 
noise, was investigated. The proof of the averaging method for such systems 
was also given, based on [I and 23. In the present paper, the results of [6] 
are generallzed'to the case of the one-dimensional conservative system of the 
general type. In particular, the expression Is obtained for the density 
limit of the stationary probability distribution of the system Investigated, 
when the noise and friction tend to zero. A method is also Indicated for the 
determination of further terms of the asymptotic expansion. 

1. Thr formul~tlon of the problrrn. We shall consider a mechanical system 
with one degree of freedom, the undisturbed motion of which is periodic and 
described by Hamilton's function ~(p,q). 

Let the system be subjected to the action of slight friction and slight 
random disturbances of the white noise type. If we assume that the effect 
of the random disturbances and the work of the friction forces over the 
period are of the same small orde of magnitude Q , then the motion of such 
a system Is decrlbed by Equations 

dq = [aN / +' - &f, (PI 911 dt + I/e [$I @, 4 d%, (4 + 012 @, q) d%a (t) I 

dp = I- aH f aq t- &f, @, dl dt + v/e bk @, d d%, 0) + (lza (p, q) d%2 @)I (i.lj 

II-I the system (I.I), the functions s,(t) and 
Wiener random processes (Integrals of "white noise 

$ (t) are Independent 
3 such that (5 (t)) = 0, 

(%2(t))= t (pointed brackets denote probability averaging) the functions 4, 
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and fQ denote, in general, a nonlinear friction in the system and the matrix 
((s,(p,a)) Is the intensity of the random impulses at the point (p,p) of the 
phase space. It Is not difficult to show that over a time of the order O(l), 
the solution of the system (1.1) can be as close as desired to the solution 
of the undisturbed system 

q’ = i?H I c?p, p’ = - 8H / 6’9 (1.2) 

If c is sufficiently small. In particilar, the energy of the system will 
not change significantly over this time. However, the relaxation time for 
the system (1.1) is of the order l/c . Therefore, we Investigate below the 
behavior of the system (1.1) over this period of time; in particular, we 
determine the stationary process of the behavior of the system. 

2. Thr 8WAtlon oi rnrrgy 0-0 ol the ryrtmm. The functions E, ( ) do 
not have a differential in the classical sense, however the system (1.1 ? can 
be given an exact meaning, if we understand It as a system of stochastic 
differential equations of Jto [7 and 81. 

As is known, the solution .p,(t), qE (t) of the system (l.l), satisfying the 
initial conditions 

PE (0) = PO. qe w = qo (2.1) 

represents a random process In the phase space of the system. Agplylng Jto's 
formula and changing variables in the stochastic integral [3], we can write 
the equation of energy change EC(t)= H(p,(t), q,(t)) of the system (1.1). 
This equation has the form 

We shall investigate Equation (2.2) together witt one of the equations of 
;he system (1.1). In the system obtained in such a manner the "fast" and 
slow' motions are separated. 

ones) the averaging principle 
For such systems (and for much more general 
is well known. 

of chance (I.e. with 
This principle, in the absence 

U..SO) was established in the works of Krylov, Bogo- 
liubov and Mltro ol'skii? 
the order of 1 c P 

This principle allows, over a period of time of 
to approximate the equation of the slow motion with an 

equation, the right side of which is averaged over the fast motion (the fast 
motion in the present case coincides with the motion of the undisturbed sys- 
tem). The corresponding averaging principle, for systems containing chance 
of the type under consideration here, 
and 21). 

was developed by the author (see [l 
Applying it to the present case, we obtain, that the probability 

distribution for the energy 
of the order l/C 

E=(t) of the system (1.1) over a time interval 
with small B is close to the probability distribution 

for the one-dimensional Markov random process ,&(t), described by Equation 

dE,, (t) = T+ [f* (E,)] + F* (Bo)] dt + -fi ‘*(E,) 
1/T (E,) d’ (t) 

(2.3) 

Here 

T (E) = $ (a+)-’ dq, E(J*2 (E) = $ <[AH(p’ ;; ” (‘)“> dt = 

f* (E) = $ f&p + f&q, F* (E) = + 
4[ 

a,, $$ + 2~1, sq + ~22 s] dt 

The integration Is carried out over the path of the undisturbed motion 
H(P,P) = E . 

From these equations, it can be seen that P(E) is the period of the 
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undisturbed motion, oorresponding to the energy E , and cj*(B), CO*‘(E) 
and &M(F) are the work of the friction forces,the local diffusion of the 
process N (p, (t), qE (t)) and the work of the additional friction forces, orl- 
ginatlng from the diffusion, over the same path ~(p,q ) = E . 

Let us denote by u(F,t) the density of the probability distribution of 
the process F (t ) . It is known, that this density satisfies the equation 
of Fokker-Plan&Kolmogorov, which 10 the present case has the form 

If the Initial distribution density is known 

u (e, 0) = u, (f!T) (2.5) 

then, solving Equation (2.4) with the initial condition (2.5), we can find 
the energy of the system (1.1) 

The smaller tl , the more exact the appro- 
(2.10, Independent of time, nor- 

malized by condition 
(2.6) 

gives the probability density ofOthe stationary process (2.3), if It exists. 

The function p,(E) is easily calculated. For this purpose we not@, and 
this Is easy to prove, that the functions a*’ and p are connected by the 
relation 

(2.7) 

using (2.7), we obtain 
E 

pG(E) = CT(E) exp 2 
ii 

-& j* (4 - QJ (4 & 

c+(z) 1 
(2.8) 

where the normalizing constant c 
that u* 

Is f&nd from (2.61, and It Is assumed 
does not become zero, so that the process (2.3) Is ergodlc. 

In the particular case @(F) = 0 
R 

FL0 (E) = CT (E) exp {2 1% dz} 
0 

(2.9) 

The condition I(E) = 0 seems somewhat artlflcial, however it is satls- 
fled ln the Important particular case, when ff=‘fap2/m--k u(q), and the 
random noise depends only on the position of the p-particle and effects 
directly onIy the impulse of the system. The system fl.1) then becomes 

dq = -& dt, dp = - $ + of (PI q)] dt*+ v/E CT (q) dE (0 (2.10) 

Since 011. = ox2 = CT,1 = 0, and o,z = CJ fq) in this case, then 
a 21 = o2 (9). Therefore the condition +(E) = 0 is satldfied. 

a11 = 0, 

3. %a rtatlonwy #tat@ of thb behavior of the l yrtan, Since the coef- 
ficients of the system (1.1) are Independent of time, it is natural to expect 
that, when t - 0 , a definite limiting state Is established, If the general 
assumptions of the friction In the system are fulfilled. It Is of interest 
to study this limiting state as E * 0 . 

Let us state the problem more precisely. Let ‘$‘) (p, q) be the density on 
the measure &p q of the stationary probability distribution for the Mar- 
kov process (1.1 , I.e. such a function, that 

ss p%~, qd P, (P, q> L PI> qd dp, da = pcE) (P, d ’ 1s dE) (P, d dp dq := 1 (3.1) 
, 

I 
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Here P, (P, Q, 1, PI, 93 
point (PIP) to point 

Is the probability density of the transition from 

find the 1Mt of the 
(P,, 1 1 ) in time is fr_t$ process (1 .I). We shall 

met on p(t) (p, q) 

It is easy to show from Lfouville’s theorem, that the llmtt p(O) (p q) if 
It exists, actually depends only on one variable ~(01 @, q) = Ir(O) (H @: q)j. 

Let the following conditions be satisfied: 

wlth any c > 0 there exists a stationary distribution for the pro- 
the density of which p(c) on the measure dp & satisfies rela- 

the distribution p(*) (Idoes not spread out* as E - 0 , I.e. for any 
8 there is a o such that 

ss de) (P, q) dp dq < ~3 (3.2) 
I-J (P, 4)*YC 

forall 0>0. 
that a low limit of the function p 

Then, us% argumy~t~,yIo~~eCt~ ~61i,~:e;~f~;m~~;~s 

stationary solution of the problem (2. ), (2.6) only by the multiPlIer 
l/T(H), 11e. 

The multiplier ~/T(H) arises from the fact that p(O) is the density on 
the measure dp dq and b 1s the density on the measure do . 

using (2.8), we obtain 
, H(P_lQ) 

p(O) (p, q) = c exp 2 
i s P cd-; (4 dz 

1 
0 

This result enables us to calculate approximate values of the important 
parameters of the process (1.1) for small values of c . For example, the 
average energy of vibration (IT,) as c - 0 tends to the limit 

<E,,> = Epo(E) dE s 
It Is Interesting to note, tpp when condition t(er) = 0 is satisfied, 

the extremes of the function p” (p, q) BT 
the undisturbed motion B(p,p) = EO 

e reached on those trajectories of 
for which & coincides with the roots 

of Equation 
j* (E,) = 0 (3.4) 

Equation (3.4) Is the well known condition for the determination of the 
spacing of the limit cycle ln a system with slight friction, conslst3ng in 
the requirement, that the work of the frlctlon forces during the limit cycle 
should be equal to zero. Thus, the stable and unstable llmlt cycles of a 
systepl without chance correspond to the maxima and minima of the density of 
the irivariant measure for a system with white noise, if the condition 
k(t) = 0 Is satisfied. 

Probably, the most practical case 1s the one, when the random,nqise 1s 
much smaller than the friction, I.e. “ij< 1. Let aii (p, q) = I”aij (PI q)a where 

the ratio of the random noise work to the 
Then also 
and Do2 (E) are 

the process tends to the highest maximum of the function 
E 
r <i( (.\ 

U (E) = \ u$i+f dz 
0 

i.e. to one of the limit cycles of the system without chance. If the func- 
tion has & number of maxima of equal height, the case has also been analyzed 
In detail (see [g]) . 

In conclusion, we shall make some comments: 
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1) Conditions (a) and (b) in Section 3, 
of the above mentioned results. 

are very important in the proof 
We can give sufficient csndltions for their 

satisfaction in terms of Llapunov's functions, based on the results [lo]. 

2) The method described here can also be applied to the analysis of 
multi-dimensional systems. However for such systems there exists, as a rule, 
more than one integral of motion. 
In general, multi-dimensional, 

Therefore the "slow motlonlt will be here, 
and the method presented will lead only to a 

reduction in the dimensions of the problem. For example, the density limit 
of the stationary distribution will depend not only on the energy, but also 
on all the other integrals of motion, 
only be obtained as an exceptlon. 

and therefore explicit equations can 

3) The function M (*) is only the first term of the asymptotic expansion 

IL(s) (P, q) =: $0) + ,p + . . . 

Using another approach, analogous to the one suggested In Ill], we can 
also obtain the other terms of this asymptotic expansion. 
is understood, the functions ~0) with 

In addition, It 

energy. 
n> $.~I11 depend not only on the 
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